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The steady-state equations of motion are solved for a fluid sphere translating in a 
quiescent medium. A semi-analytical series truncation method is employed in 
conjunction with a cubic finite-element scheme. The range of Reynolds numbers 
investigated is from 0.5 to 50. The range of viscosity ratios is from 0 (gas bubble) 
to lo7 (solid sphere). The flow structure and the drag coefficients agree closely with 
the limited available experimental measurements and also compare favourably with 
published finite-difference solutions. The strength of the internal circulation was 
found to increase with increasing Reynolds number. The flow patterns and the drag 
coefficient show little variation with the interior Reynolds number. Based on the 
numerical results, predictive equations for drag coefficients are recommended for 
both moderate- and low-Reynolds-number flows. 

1. Introduction 
The literature contains numerous theoretical solutions for flow over a solid sphere 

and a gas bubble. In both of these cases, the internal circulation may be neglected 
with the no-slip or no-shear stress boundary conditions respectively. Clift, Grace & 
Weber (1978), present a good review of previous work in this area. 

For a fluid droplet where the viscosity ratio is not near one of these extremes (that 
of a solid sphere or a gas bubble), the additional internal flow field must be solved 
simultaneously. Both Hadamard (191 1 )  and Rybczynski (191 1) independently 
presented solutions for steady flows inside and around an axisymmetric fluid sphere 
with the creeping-flow assumptions. In  the 1960s, several attempts were made using 
a Galerkin approach to solve for the flow field with the nonlinear convective terms 
included. A typical example is that presented by Nakano & Tien (1967). These 
Galerkin solutions did not contain enough terms to accurately describe the flow field 
at moderate Reynolds numbers. They also did not contain the correct trial functions 
to converge to the solution of Hadamard and Rybczynski at low Reynolds numbers. 
(For this study, unless otherwise indicated, the Reynolds number is based on the 
exterior properties.) 

In the 1970s several finite-difference models were presented: LeClair et al. (1972) 
were the first to use a finite-difference method to calculate the steady motion of water 
drops in air. Their numerical results compare favourably with their own wind-tunnel 
measurements. Predictive equations are presented in Abdel-Alim & Hamielec (1975) 
and Rivkind, Ryskin & Fishbein (1976) to estimate the drag coefficient as a function 
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of both the viscosity ratio X (interior to exterior) and the Reynolds number. 
Abdel-Alim & Hamielec (1975) proposed the following equation for the drag 
coefficient : 

Reex is defined as 

1 (1.3+ X)'-0.5 
(1.3 + X) (2.0+ X) 

Cd = 26.5 Re;:*74 

2 Ua 
Reex = -, 

V,X 

where U is the free-stream velocity, a is the drop radius, and vex is the exterior 
kinematic viscosity. Rivkind & Ryskin (1976) proposed another equation to estimate 
the theoretical drag coefficient on such a drop: 

A quick comparison demonstrates that differences of up to 20 yo may occur between 
these two equations (for Reex < 20). In addition to the above discrepancy, as 
the Reynolds number approaches zero neither of the above equations approach 
the drag coefficients predicted by the Hadamard and Rybczynski solution : 
Cdcf = 16[(1+ 1.5X)/(1+X)]/Ree,. 

In a recent paper, Oliver & Chung (1985) investigated the steady flows inside and 
around a fluid sphere at low Reynolds numbers by a hybrid method of the 
series-truncation technique and the finite-difference numerical approximation. They 
found that the density difference between the fluid sphere and its ambient fluid has 
almost no effect on the drag coefficient at low Reynolds numbers. The shear stress 
and the drag coefficient increase with increasing viscosity ratio of fluid sphere to 
ambient fluid and decrease with increasing Reynolds number. 

Brabston & Keller (1975) used the same hybrid method to study the flow around 
a gas bubble. Their results show that the calculated drag coefficients compare well 
with those obtained by asymptotic analysis for high-Reynolds-number flow when the 
Reynolds number is greater than 40 and also agree with creeping-flow solutions if 
the Reynolds number is smaller than 0.5. 

Instead of a finite-difference method, the combination of the series-truncation and 
a cubic finite-element scheme are selected in this paper for predicting the flows inside 
and around a fluid sphere at  low to moderate Reynolds numbers. It is intended to 
demonstrate the feasibility of this new technique and some novel features of this 
hybrid method for solving highly nonlinear flows. It is also intended to independently 
calculate the flow fields using a method that incorporates no finite-difference 
methods and then to determine what causes the discrepancy between the results of 
Abdel-Alim & Hamielec (1975) and Rivkind & Ryskin (1976) as mentioned above. 
More importantly, there seems to be a lack of information on the fluid mechanics of 
a drop in the moderate-Reynolds-number range of 1 to 100. Existing analytical 
solutions (mostly asymptotic methods) are only applicable to extremely small (< 1) 
or large (> 100) Reynolds numbers. Most of the experimental investigations in the 
literature deal with Reynolds numbers larger than 100. Also all experimental results 
carry some uncertainties due to certain degrees of surface contamination, which 
explains the wide range of variations in reported experimental findings. 

The assumptions used in this work are identical with those used in Oliver & Chung 
(1985). Owing to the larger Reynolds numbers investigated in this work, it should 
be emphasized that a steady, axisymmetrical, laminar solution is sought. 
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Direction of flow + 
e, v 

FIGURE 1. Coordinate system. 

2. Mathematical formulation 
A fluid sphere with density pin, viscosity pin is translating in continuous fluid with 

density pex and viscosity pex. The coordinate system is such that the origin is fixed 
to the droplet centre and 8 = 0 is directed downstream, see figure 1. 

The equation of continuity is satisfied by introducing the dimensionless stream 
function @, defined by the dimensionless velocities 

The stream function is made dimensionless with Ua2, where a is the radius of the 
droplet; the velocities are made dimensionless with the free-stream velocity U. The 
dimensionless radial coordinate r is made dimensionless by a. 

The dimensionless equation of motion in terms of the stream function is 

with 

Equation (2) is valid for both the fluid sphere and its ambient flow. Re should be 
Rein = 2pin Ua/pin for flow in the fluid sphere and Reex = 2pex Ua/pex for ambient 
flow. 

(i) At the axis symmetry (8 = 0, x ) :  
The boundary conditions to be satisfied by (2) are 

= o (u is finite), ae (3) 

(4) $in = 0 (arbitrary constant). 
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(ii) At  the interface ( r  = 1 ) :  
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- 
7rein - 7reex 7 

$in = $ex = 0- 

(iii) At  free-stream conditions ( r m )  : 

$ex = fir& sin28. 

In the above, 7,e is the interfacial shear stress. 

3. Solution procedure 
The series-truncation method used by Dennis & Walker (1971) for flow about a 

solid sphere is used in this analysis. It was also adopted by Brabston & Keller (1975) 
for flow about a gas bubble; that is, we define the stream function as an infinite series 
(later to be truncated) of associated Legendre functions P', with corresponding 
unknown radial functions Ffl. Equation (2) is transformed into a series of ordinary 
differential equations (in the radial direction). Specifically let 

a, 

$ = fl-1 C Ffl(r)rP',(t)dt; 1 z = cos(8). (9) 

Then, using the orthogonality of these Legendre functions and the additional 
property 

with M = j + m .  
The coefficients 

are the '3-5' symbols. Talman (1968) presents the theory of these coefficients with 
respect to associated Legendre functions. Rottenberg et al. (1959), review several 
useful relations used for calculating these coefficients. 

After much manipulation, (2) is converted, via (10) and the orthogonality of 
Legendre functions, to 

with 
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where Re is the appropriate Reynolds number (Re,, or Re,,). The primes indicate 
differentiation with respect to r and the coefficients CU and CV are given by 

C U t j = - ( 2 n + l )  [j(j+i)]:( ~ n i j>(" i j) 
n ( n + l )  - 1  0 1 0 0 0 '  

C V ~ ,  = (2n+ 1) [j(' ' - 1 ) ( j + 2 ) ] : (  n i j n i j 
n ( n + l ) i ( i + l )  - 1  -1  2 >( 0 0 0 > *  

The transformed boundary conditions become 
(i) At the sphere centre ( r  = 0): 

FL,,(O) = 0, 

%JO) = 0. 

C i n ( l )  = FLex(l) ,  
(ii) At the interface ( r  = 1 ) :  

= 0. 
(iii) At the free stream ( r  = roo):  

Fhe,(r,) = 2r, S,, (S,, = Kronecker delta function). (19) 

Equation ( 1  1 )  represents an infinite system of coupled ordinary differential 
equations. The order of equations is made finite by truncation of the series in ( 9 ) ;  
that is, we set all F,(r) = 0, for n > no. The value of no a t  which the omitted terms 
have an insignificant effect on the solution is found by trial and error. At low Reynolds 
number, only a very few terms are needed for good convergence owing to the relative 
symmetry about 6 = !jn of low-Reynolds-number flows. However, as the convective 
terms become more important, this symmetry is destroyed and more terms are needed 
in the truncated series for adequate convergence of the series. 

The truncated form of ( 1  1 )  is solved numerically by finite-element methods where 
the domain is divided into several elements (generally five interior and 11 exterior 
elements). The trial functions used are cubic Hermite polynomials with C' continuity. 
See Huebner (1975) for a good explanation of these polynomials as they relate to 
finite-element interpolation functions. 

Each cubic element corresponds to four interpolation functions, 'N,' (see Huebner 
1975) : 

Interpolation function Corresponding node 
N ,  = 1-3s2+2s3 1 
N ,  = (AT) s(s- 1 ) ,  1 
N3 = ~ ~ ( 3 - 2 8 )  2 
N4 = (Ar)  8,(s- 1 )  2, 

with s = ( r - ro ) / ( r l - ro ) ,  and Ar = rl -ro.  The node and element labelling schemes 
are shown in figure 2. The schematic diagram of the C1 cubic Hermite-polynomials 
representation for an element is given in figure 3. 
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l C + 8  2"-0 1 C  2e 

IC-I 2-1 1 C + l  2 C + l  

Node number 

I I A A I 
e- 1 e e+ 1 Element number 

FIGURE 2. Node/element labelling scheme. 

fl & f 2  f 3  & f a  
I I 

Node 1 Ar Node 2 
r = ro r = rl 

FIGURE 3. Representation of an element using C' cubic Hermite polynomials for trial functions. 

Equation (1 1) in its truncated form represents no equations over the entire domain 
O <  r < rco. These no equations are transformed into 4n0 equations for each element 
by employing Galerkin's method for each element ; that  is, (11) is multiplied by each 
of the four interpolation functions Nf and then integrated over each of the elemental 
domains : 

Note that 

Define the vectors 

where the superscript e denotes element e and where 

Using the above vector representations, (1 1) becomes, in vector form, 

The variable Fn is approximated on each elemental domain by the discrete 
approximation 

4 
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The elemental systems of equations plus the appropriate boundary equations are 
combined into a global system of equations. This global system is linearized using 
a Newton iterative scheme. With proper arrangement, this global system has a block 
tridiagonal form with each block being a 2n, x 2n0 submatrix. With such a block 
tridiagonal system, the number of calculations per iteration is roughly proportional 
to En:, where E is the total number of elements. 

This iterative solution procedure is quite efficient a t  lower Reynolds numbers where 
only a few terms are required for good convergence. As the convective terms become 
more important, the flow field becomes quite asymmetric (about the 8 = +IT axis) and 
increasingly more terms are needed. For this reason, this investigation employs up 
to no = 20 for Reex = 50. 

The global Newton system of equations was iterated until convergence was 
attained. Convergence was assumed when the drag coefficient c d  ceased to change; 
that is, convergence was assumed when 

1%-1 I < 0.001, 

where C;.d* and ww are the previous and the updated drag coefficients respectively. 
The drag coefficient is defined as 

The drag is often separated into two components : the form drag and the viscous drag. 
These two components of the drag may be shown to be 

Drag, = - 2na2 

Drag, = 27ca2 Jon ( - T , . ~  sin2 8 + rrr cos 8 sin 8 )  do, 

P cos 8 sin 8 do, I,“ 

where the subscripts v and f denote the viscous and form components, and where 
P is  the pressure and rr0 and r,.,. are tangential and normal stress tensors respectively. 
The parameters used in (28)  (i.e. pressure, etc.) are measured on the exterior surface 
of the sphere. 

One may show that the resulting components of the drag coefficient are given as 

l6 FT. 
cdv = 

All derivatives have been evaluated on the exterior surface of the sphere. The total 
drag is merely the sum of the two components; hence, the total drag coefficient c d  

is 
c d  = c d ,  + c d v -  (31) 

4. Results and discussion 
Determining the value at which the truncation is reasonable is an iterative process. 

As an example of the convergence of the solution with no, the calculated drag 
coefficients are tabulated in table 1 for the special cases of X = 0.333 and 3.0 for 
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X = 0.333 X = 3.0 

no Re = 1 Re = 50 R e =  I Re = 50 

2 20.5 1.07 25.7 1.93 
4 20.1 1.02 25.1 1.78 
6 20.0 - 25.0 

1.61 8 -  0.963 
12 - 0.930 - 1.52 
16 - 0.910 1.47 
20 - 0.897 1.44 

TABLE 1.  C, as a function of no : (Rein = Re,,) 

- 
- 

- 

- 

Reex = 1 .O and 50.0. The convergence was rapid a t  low Reynolds numbers. However, 
a t  larger Reynolds numbers, the convergence with respect to  no was slow. For this 
reason, this solution procedure is considered quite efficient at lower Reynolds 
numbers, but requires extensive computation a t  moderate Reynolds numbers, a 
trend that is often associated with this type of nonlinear fluid-mechanics problem. 

Another method of illustrating the convergence of the solution with respect to no 
is by comparing the computed interfacial velocities as a functiopn of no. In  figure 4 
the interfacial velocities are plotted for a droplet with a viscosity ratio of X = 3.0 
for Reynolds numbers of 1 .O and 50.0, as a function of no. 

I n  addition to the convergence with respect to the infinite series it is also 
informative to investigate the Convergence with respect to grid resolution and the 
location at which the frae-stream conditions are assumed ( r m ) .  Two simulations were 
made using a coarser grid mesh and a smaller outer radius. Selected results are 
illustrated in table 2. The outer radii of the elements for both ra, = 300 and 100 are 
listed in table 3. 

For larger values of viscosity ratio X, a recirculation region develops in the wake 
region. The flow field about the wake region has been studied experimentally by 
Taneda (1956) for solid spheres. As a check on the accuracy of the flow field predicted 
by this method, the recirculation region has been examined for a solid sphere 
(X = 10') for comparison with the experimental results of Taneda (1956). The flow 
lines about a solid sphere with Reex = 30.0 are plotted in figure 5.  

At Reex = 30.0, the recirculation region in the wake is small. As the Reynolds 
number increases, the angle a t  which the recirculation region begins increases as does 
the length of the recirculation region. The outlines of the wake regions for Reex = 30, 
40 and 50 are plotted in figure 6. 

The distance from the location of the reattachment to the centre of the sphere has 
been estimated by Taneda (1956) using photographic means with a film of dried milk 
as a tracer. The radial position of the reattachment (as calculated by the present 
method) is compared with interpolations of the experimental results of Taneda (1956) 
in table 4. The agreement is excellent at Reex = 30; even at Reex = 50, the difference 
is still within the experimental errors. 

The predicted drag coefficient is compared with the numerical (finite-difference) 
work of Rivkind & Ryskin (1976) in table 5. There is very good agreement between 
the two models for Reex < 20 (up to  about 4 Yo difference). The differences appear to 
be most pronounced a t  higher Reynolds numbers and for larger values of X. A check 
of the predicted drag coefficients calculated by the present method and the predictive 
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a 
s 
c) 

0 f R  4% t n 
Tangential coordinate 

I '  I I I I 

0 f R  c sn R 

Tangential coordinate 

FIQURE 4. Tangential velocity at the interface as a function of no for (a) Re,, = 1.0, X = 3.0; 
(b)  Re,, = 50.0, X = 3.0. 

equation proposed by Rivkind et al. (1976) indicates a good agreement for 
2 < Reex 4 20. For Reex = 50, the present results exceed those of the Rivkind et al.'s 
(1976) predictive equation by up to 10 %. Even though the disagreement is small, 
an attempt was made to compare these two numerical calculations with experimental 
data. Because of uncertainties concerning surface contamination and droplet defor- 
mation, it is meaningful only to compare the drag coefficients of solid spheres. The 
results of Elzinga & Banchero (1961) were used because they are among the few 
experiments that cover the moderate-Reynolds-number range. The comparison is 
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5 interior, 3 interior, 
11 exterior 8 exterior 
elements elements 

r m  = 300 rm = 100 

Re = 1 c, = 20.0 c, = 20.0 
X = 0.333 F;(1) = 0.833 F;( 1) = 0.832 

FL( 1) = -0.0855 Ft( 1) = -0.0851 

Re = 50 C, = 1.44 C, = 1.43 
X = 3.0 F;( 1) = 0.722 

Fi(1) = -0.541 
F;( 1) = 0.719 
Fi(1) = -0.540 

TABLE 2. Comparison of grid mesh sizes and r m  (Re,, = Re,,) 

r,  = 300 r ,  = 100 

Element Radius Element Radius 

1 0.25 1 0.40 
2 0.50 2 0.80 
3 0.75 3 1 .OO 
4 0.90 4 1.20 
5 1 .00 5 1.50 
6 1.10 6 2.00 
7 1.333 7 4.00 
8 1.80 8 8.00 
9 2.50 9 20.00 

10 4.00 10 40.00 
11 6.00 11 100.00 
12 10.00 
13 20.00 
14 40.00 
15 100.00 
16 300.00 

TABLE 3. Outer radii of the elements 

shown in table 6. It seems that the two different numerical methods converge to the 
experimental result from opposite directions for Reex at  50 but for lower Reynolds 
numbers the present calculations are closer to the results of Elzinga & Banchero 
(1961). 

The Elzinga & Banchero (1961) experiments also included an ethylene glycol drop 
in fino1 which gives a Reynolds-number range of 30-80, X = 0.9 and Reex = 0.75 Re,,. 
They reported a drag coefficient of 1.25 for Reex = 50. Compared with 1.12 of Rivkind 
et al. (1976) and 1.15 of the present calculation for the case of X = 1.0, Reex = 50, 
and Reex = Rein, the experimental result is high as expected owing to some surface 
contamination. 

The computed drag coefficients may also be compared with the theoretical and 
experimental results of Abdel-Alim & Hamielec (1975). As mentioned above, there 
are wide ranges of experimental values for drag coefficients for fluid spheres in the 
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I I 

FIGURE 5. Stream-function contours, Re,, = 30.0, X = 10'. 

Re,, = 50 

=.ri/' 

Flow direction + 

FIGURE 6. Boundaries of the recirculation region (@ = 0) ,  X = lo7 for comparison with the 
experimental work of Taneda (1956). 

Re = 50 Re = 30 Re = 40 

Present Taneda Present Taneda Present Taneda 

r = 0.32 ~ 0 . 3 2  0.68 ~ 0 . 6 1  0.965 ~ 0 . 8 7  

TABLE 4. Comparison of the location of the rear end of the wake t~ predicted by the present solution 
and as interpolated from the experimental data of Taneda (1956) 
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Re 
X 0.5 1 .o 2.0 5.0 10.0 20.0 50.0 

0 33.8 (33.8) 17.5 (17.6) 9.3 (9.4) 4.25 (4.33) 2.43 (2.48) 1.41 (1.43) 0.69 (0.70) 
0.333 38.3 (38.2) 19.9 (20.0) 10.6 (10.8) 4.89 (5.02) 2.87 (2.94) 1.71 (1.74) 0.89 (0.90) 
1 .o 42.9 (42.7) 22.4 (22.5) 12.1 (12.2) 5.65 (5.75) 3.33 (3.43) 2.05 (2.09) 1.12 (1.15) 
3.0 47.4 (47.2) 24.8 (25.0) 13.4 (13.6) 6.36 (6.50) 3.80 (3.93) 2.38 (2.45) 1.36 (1.44) 
Solid 52.2 (51.8) 27.4 (27.5) 14.7 (15.1) 7.05 (7.28) 4.28 (4.45) 2.71 (2.81) 1.58 (1.72) 

TABLE 5. Drag coefficients; Rivkind et al. (1976) (Re,, = Rei,). present results in parentheses 

sphere 

Reex 10.0 20.0 50.0 
Experimental results of Elzinga & Banchero (1961) 4.5 2.8 1.65 
Rivkind et al. (1976) 4.28 2.71 1.58 
Present results 4.45 2.81 1.72 

TABLE 6. Comparison of drag coefficients for solid spheres 

literature. Reasons for this wide range include droplet deformation and oscillation 
at larger velocities (Klee & Treyball 1956) and system impurities (Bachhuber & 
Sanford 1974). Thus experimental verification of a model based on comparison of drag 
coefficients alone is tenuous. However, since the drag coefficient is a parameter that 
is often measured in experimental studies, the experimental and numerical 
estimations of the drag coefficients of Abdel-Alim & Hamielec (1975) are compared 
with the present model in table 7 .  For comparison with the results of Abdel-Alim & 
Hamielec (1975), the interior Reynolds number was set such that Rein = Ree,/X 
corresponds closely to their assumptions of nearly equal fluid densities. 

There are significant differences between the theoretical drag coefficients predicted 
by Abdel-Alim & Hamielec (1975) and the present results. The exact cause of these 
discrepancies is not certain. It is possible that the free-stream conditions were 
imposed a t  a radius that was not sufficiently long to removce any significant end 
effects. The position a t  which the free stream was imposed by Abdel-Alim & Hamielec 
(1975) was not explicitly given. It may be estimated from the mesh dimensions that 
they range from about roo = 25.8 for Re = 1.0 to r ,  = 7.4 for Reex = 50. For the 
present study the free-stream conditions were imposed a t  ra, = 300. The predictive 
equation proposed by Abdel-Alim & Hamielec (1975) also appears to be questionable 
when compared with their own experimental and numerical predictions. For example, 
their predictive equation for the drag Coefficient yields a drag coefficient of 4.00 for 
Reex = 5.0, X = 0.0995. Their numerically calculated drag coefficient was 4.39. For 
comparison it is seen that the predictive equation of Rivkind et al. (1976), predicts 
a drag coefficient of 4.51 and the present series-truncation method predicts a drag 
coefficient of 4.57. Other such examples may be obtained by comparing the values 
in table 7(a, c ) .  

In the light of the good agreement between the present results and the predictive 
equation for drag coefficients proposed in Rivkind et al. (1976) (for 2.0 < Reex < 20.0) 
and the discrepancies between the present results and the predictive equation of 
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(a) Abdel-Alim & Hamielec (1975) - calculated 

X 1.0 5.0 10.0 25.0 50.0 
Reex 

0.0995 17.5 4.39 2.50 - - 
0.301 19.2 4.81 2.89 - - 
0.554 20.0 5.12 3.11 - - 
0.266 - 4.54 - 1.31 0.84 
0.708 - 4.90 - 1.60 1.11 
1.40 - 5.02 - 1.69 1.23 

(b) Abdel-Alim & Hamielec (1975) - experimental 

X 1.0 5.0 10.0 25.0 50.0 
Re,, 

0.0995 18 4.6 2.8 - - 

0.301 19 5.0 3.1 - - 
0.554 20 5.2 3.3 - - 

0.266 - 4.5 1.45 0.9 
0.708 - 4.9 - 1.75 1.2 
1.40 - 5.0 - 1.8 1.25 

- 

( e )  Present results (Re,, = Reex/X) 

Reex 1.0 5.0 10.0 25.0 50.0 
120 6 10 12 20 20 
X 

0.0995 18.5 4.57 2.64 - - 

0.301 19.9 4.97 2.91 - - 

0.554 21.1 5.33 3.14 - - 
0.266 - 4.91 - 1.43 0.85 
0.708 - 5.50 - 1.69 1.05 
1.40 - 6.00 - 1.91 1.24 

TABLE 7. Comparison of experimental (a) and numerical (b) estimations of the drag coefficient by 
Abdel-Alim & Hamielec (1975) with the present results (c) 

Abdel-Alim & Hamielec (1975), the latter appears to be questionable. For 
2.0 < Reex < 50.0, the predictive equation of Rivkind et al. (1976) is recommended: 

1 24 
Cd = 

Neither of the proposed predictive equations is adequate for low Reynolds 
numbers. As mentioned previously, the above equation does not work for Reynolds 
numbers smaller than 2, when it fails to converge to the creeping-flow solution for 
Reex+O. For Reex < 2 the predictive equation proposed in Oliver & Chung (1985) 
as given below should be used: 

where C d c f  is the drag coefficient for creeping flow, 

c =-(-) 8 3X+2 
d c f  Reex x+i (34) 
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~ 

Flow direction + 3 0.01 @ 

-0.01 

(b) 

Flow direction+ 

FIGURE 7. Stream-function contours for X = 0.33: (a) Re,, = 1.0; (6)  50.0. 

For a fluid sphere, as the Reynolds number increases, the internal circulation 
increases with the Reynolds number. This increased circulation is driven by the sharp 
velocity gradient near the droplet interface. This increased circulation is evident in 
figures 7 (a, b )  and 8 (a, b ) ,  where the streamline contours are plotted for Reex = 1 and 
50 for the viscosity ratios of X = 0.333 and 3.0 respectively. 

This increased circulation inside the droplet may also be seen in the velocity profiles 
for the interfacial ( r  = 1 )  velocities (figure 9a, b ) .  As the Reynolds number increases, 
the peak interfacial velocity increases. In  addition, the symmetry about the 0 = 
axis is lost. This increasing internal circulation will have effects on the rate of heat 
or mass transfer from the droplet. 

Nakano & Tien (1967) used a Galerkin treatment to investigate the effects of the 
int.erior Reynolds number on the drag coefficient and on the interior circulation 
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-0.01 
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FIQURE 8. Stream-function contours for X = 3.0: (a) Reex = 1.0; ( b )  50.0. 

patterns. For the cases investigated, they found that the interior Reynolds number 
has an insignificant effect on the drag coefficient. However, their model predicted that 
the interior flow patterns were a function of the interior Reynolds number. This 
conclusion appears to contradict the work of Rivkind & Ryskin (1976). The Galerkin 
solution procedure used by Nakano & Tien (1967) employed very few trial functions 
and this produced results that were highly preliminary. For these reasons, a single 
simulation was made with the present method to compare the effects of the interior 
Reynolds number on both the drag coefficient and the droplet flow pattern. For this 
simulation a viscosity ratio of X = 0.333 was assumed with an interior Reynolds 
number of Rein = 200 and an exterior Reynolds number of Heex = 50. The calculated 
drag coefficient for Rein = 200, Re,, = 50 was C, = 0.89. This is about 1 yo lower than 
the drag coefficient (C, = 0.90) for the same viscosity ratio and the exterior Reynolds 
number, but with an interior Reynolds number of Rein = 50. 
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FIGURE 9. Tangential velocity at the interface for (a) X = 0.333; ( b )  3.0. 

The effects of the interior Reynolds number on the flow pattern have also been 
investigated. In  figure 10, the interfacial velocity profiles have been plotted for these 
two cases. The interior Reynolds number was found to have only a limited effect on 
the interfacial velocities. A similar investigation was performed to investigate the 
effects of the interior Reynolds number on the flow pattern inside the droplet. Again 
it was not found to have a significant effect. Unless otherwise stated, the interior 
Reynolds number was set equal to the exterior Reynolds number as an input 
parameter for the present results. 

Based on the conclusions of Rivkind et al. (1976) and the above investigation, i t  
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FIGURE 10. Tangential velocity at the interface as a function of Rein for Reex = 50.0, X = 0.333. 

may be assumed that for moderate interior Reynolds numbers with Reex < 50, the 
interior flow patterns and the drag coefficients are generally insensitive to changes 
in the interior Reynolds numbers. 

5.  Conclusion 
The Navier-Stokes equations for steady axisymmetrical flow about a fluid sphere 

have been solved for moderate Reynolds numbers (0.5 < Reex < 50) using a coupled 
finite-element and series-truncation scheme. The present results agree closely with 
limited experimental measurements and also compare favourably with the finite- 
difference prediction of Rivkind et al. (1976). It was found that the equation proposed 
by Rivkind & Ryskin (1976) for predicting the drag coefficient was in good agreement 
with the present calculations for 2 < Reex < 20. Based on our numerical results, an 
equation was proposed to predict the theoretical drag coefficient for low but finite 
Reynolds numbers between 0 and 2. 

The strengths of the internal circulation were discovered to increase with Reynolds 
number. As the Reynolds number increases, the angle at  which the wake recirculation 
begins also increases and the length of the recirculation region expands. 

The present results did not compare favourably with the numerical results of 
Abdel-Alim & Hamielec (1975). It is proposed that the limited radius at  which the 
free-stream conditions were imposed in that work may account for the errors in their 
results. 

The conclusion drawn by Rivkind & Ryskin (1976), that for moderate Reynolds 
numbers (both interior and exterior) the flow patterns are often insensitive to the 
interior Reynolds number, was also confirmed in our numerical experiment. 
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